Symbolic Knowledge Distillation

From General Language Models to Commonsense Models

Chandra Jack

Bhagavatula  Hessel

Sean Yejin
Welleck Choi

i .

7




Language models != knowledge models

Transformers for
aph Construction

ATOMIC: A
Com

(COMET-) ATOMIC);

On Symbolic and Neural Commonsense Knowledge Graphs

for If-Th

aarten Sap
arten < AAAI 2021

aitanya Asli
alaviya  Celikyilmaz

p
i ‘g‘) ‘.\‘
@
) r;&’(v : |
£ G MR :
i i \ R
2 .\‘*\ il W

Chandra
Bhagavatula

Ronan Jeff Keisuke Antoine
Le Bras Sakaguchl Bosseult Me

Fully crowdsourced by humans ?f' '[ J**E ’ ""

|

\ A \ 3 -
| VT R R ~ i0m

Symbolic commonsense

Neural commonsense model
knowledge graph



%2 ATOMIC

Maintain
their car

\

Physical-Entity Commonsense

[ Has propertyJ

-

N
As a result, X wants \
to...

Before, X

needs ...

Because X

wanted to ...

X's car is totaled
completely

X gets X's car repaired

V

N
Used for

ﬂ-

[

Is made of -
e

Can be
hindered by Happens before
LHappens after

Event-Centered Commonsense




[ Has propertyj

\

4 )
As a result, X wants \
to... .

N
Used for »-
Before, X
needs ...
[ Is made of ]

-

- Because X

Maintain < wanted to ... \ A
their car - ’ , : Paper

X gets X's car repaired Used for ]

4 !
Can be L
hindered by {Happens before
The car costs j { J |
Happens after
too much
v
X's car is totaled

completely X drives an old car



Xis in a hurry to
get to work

Faulty traffic _— Give him .
light [Happens afterJ / a ticket X plays blackjack
- h
[ Causes J [ Happens ] / —_—
. \

wiee oo~ (Up until 2020) fully crowdsourced v
- op/ ..Burglar

[ Filled by/] /

@ ==

Cheater

wanted to...

 [tecopableot |
1.33M commonsense if-then inferences

23 relations (or inference types)

‘ Before, X
needs ... As a result,
V ( Is made of ) - ‘ X reacts \ Is located at )
< Because X
X : i Paper X steals th R Make Gambl
gets X's car repaired Used for steals the car money ambler

[ Can be ] / X is seen as Gan be 5 y .
hindered by Happens before Hindered b ecause Is seen as
T GEP (s [H f X likes driving now - y wanted

appens a ter

h
too muc X plays blackjack

The car would
X spends a fortune X can't find a
X's car is crowbar not start
totaled completely X drives an old car

Is located at

Because X
Maintain wanted to ...

their car




Knowledge Models Oftf-the-shelf Language Models

100
X B o
DO &
gc)%))g 50 730
532
o 0

COMET (BART) GPT3

COMeT (BART): x435 smaller model (~400M parameters), GPT-3 (Few Shot): 175B parameters!!
informed by ATOMIC%8 pre-trained with a ton of web text (~500B tokens)
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Does Symbolic Knowledge Distillation Produce Good knowledge?
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Thanks! Questions?




